Mathematics Grade 6

Mathematics Grade 6

Shape and Space (SS)

Outcome	1 - Beginning The student is having difficulty demonstrating an understanding of the concept.	2-Approaching The student is developing an understanding of the concept.	3 - Meeting The student consistently demonstrates an understanding of the concept or has achieved the concept.	4- Exemplary The student independently demonstrates an in-depth understanding of the concept, and consistently applies this knowledge to new situations.
SS6.1 I can demonstrate understanding of angles including: identifying examples classifying angles estimating the measure determining angle measures in degrees drawing angles applying angle relationships in triangles and quadrilaterals. [C, CN, ME, PS, R, V]	- I can draw an angle and I can identify angles in the environment.	- I can classify an angle as being an acute, obtuse, straight, right, OR reflex angle with or without the use of a referent.	- I can draw AND classify an angle as being an acute, obtuse, straight, right, AND reflex angle with or without the use of a referent.	- I can draw, classify, and explain why an angle is an acute, obtuse, straight, right, AND reflex angle without the use of a referent.
	- I can explain the difference between measuring length and measuring an angle.	- I can estimate the measure of an angle in degrees.	- I can accurately estimate the measure of an angle in degrees, then verify that I am right by measuring with a protractor.	- I can accurately estimate the measure of an angle in degrees, then verify with a protractor, and explain the process.
	- I can identify the number of angles in a triangle and in a quadrilateral.	- I can prove that the sum of the angles in a triangle total 180° and that the sum of the angles in a quadrilateral total 360°.	- I can determine the measure of a missing angle from a triangle OR quadrilateral without the use of a protractor and explain how I know this.	- I can determine the measure of a missing angle from a triangle AND quadrilateral without the use of a protractor and explain how I know this.
Comments				

Mathematics Grade 6 Shape and Space (SS)				
Outcome	1 - Beginning The student is having difficulty demonstrating an understanding of the concept.	2 - Approaching The student is developing an understanding of the concept.	3 - Meeting The student consistently demonstrates an understanding of the concept or has achieved the concept.	4- Exemplary The student independently demonstrates an in-depth understanding of the concept, and consistently applies this knowledge to new situations.
SS6. 2 I can extend and apply understanding of perimeter of polygons, area of rectangles,	- I can represent the perimeter of a polygon concretely AND pictorially.	- I can determine strategies OR formulae for determining the perimeter of polygons, including rectangles and squares.	- I can determine strategies AND formulae for determining the perimeter of polygons, including rectangles and squares.	- I can apply my formula for determining perimeter to other polygons.
and volume of right rectangular prisms (concretely, pictorially, and symbolically) including:	- I can represent the area of a rectangle concretely OR pictorially.	- I can represent the area of a rectangle concretely AND pictorially.	- I can determine a formula for determining the area of rectangles, and defend it.	- I can apply my formula for determining the area of rectangles to various reallife situations.
relating area to volume comparing perimeter and area comparing area and volume generalizing strategies and	- I can describe right rectangular prisms.	- I can represent the volume of a right rectangular prism concretely AND pictorially.	- I can determine a rule (formula) for determining the volume of right rectangular prisms, and defend it.	- I can apply my formula for determining the volume of right rectangular prisms to various real-life situations.
formulae analyzing the effect of orientation solving situational questions. $[C N, P S, R, V]$	- With help, I can solve situational questions involving the perimeter of polygons, the area of rectangles, OR the volume of right rectangular prisms.	- I can solve situational questions involving the perimeter of polygons, the area of rectangles, OR the volume of right rectangular prisms.	- I can solve situational questions involving the perimeter of polygons, the area of rectangles, AND the volume of right rectangular prisms.	- I can solve multi-step situational questions involving the perimeter of polygons, the area of rectangles, AND the volume of right rectangular prisms.
	- With help, I can compare, using models, the relationship between perimeter and area.	- I can compare, using models, the relationship between perimeter and area, OR between area and the volume of a right rectangular prism.	- I can compare, using models, the relationship between perimeter and area, AND between area and the volume of a right rectangular prism.	- I can explain the importance of understanding the relationship between perimeter and area, and between area the volume of a right rectangular prism.
Comments				

Mathematics Grade 6

Mathematics Grade 6

Shape and Space (SS)

Outcome	1 - Beginning The student is having difficulty demonstrating an understanding of the concept.	2-Approaching The student is developing an understanding of the concept.	3 - Meeting The student consistently demonstrates an understanding of the concept or has achieved the concept.	4- Exemplary The student independently demonstrates an in-depth understanding of the concept, and consistently applies this knowledge to new situations.
SS6.3 I can demonstrate understanding of regular and irregular polygons including: classifying types of triangles comparing side lengths comparing angle measures differentiating between regular and irregular polygons analyzing for congruence. [C, CN, R, V]	- Using side lengths and angle measures, I can classify OR draw triangles that are scalene, isosceles, equilateral, right, obtuse, OR acute.	- Using side lengths and angle measures, I can classify AND draw triangles that are scalene, isosceles, equilateral, right, obtuse, OR acute.	- Using side lengths AND angle measures, I can classify AND draw triangles that are scalene, isosceles, equilateral, right, obtuse, AND acute AND explain my reasoning.	- Using side lengths and angle measures, I can prove how the same triangle can be classified in more than one way and explain my thinking.
	- I can identify regular polygons, and explain why a polygon can be call regular.	- I can classify polygons as being regular or irregular.	- I can explain the difference between regular and irregular polygons and identify the characteristics of each.	- I can prove that a 2D shape is a regular or irregular polygon, or a non-polygon, with extensive reasoning.
	- I can demonstrate congruency.	- I can determine whether or not two polygons are congruent by using side length measures OR angle measures.	- I can prove why two polygons are (or aren't) congruent by using side lengths AND angle measures.	- I can draw a congruent polygon in a different orientation and prove with multiple reasons why it is congruent.
Comments				

Mathematics Grade 6 Shape and Space (SS)				
Outcome	1 - Beginning The student is having difficulty demonstrating an understanding of the concept.	2 - Approaching The student is developing an understanding of the concept.	3 - Meeting The student consistently demonstrates an understanding of the concept or has achieved the concept.	4- Exemplary The student independently demonstrates an in-depth understanding of the concept, and consistently applies this knowledge to new situations.
SS6.4 I can demonstrate understanding of the first quadrant of the Cartesian plane and ordered pairs with whole number coordinates. [C,CN, V]	- With help, I can plot different positive points on the Cartesian Coordinate Plane, and identify the coordinates.	- I can plot different positive points on the Cartesian Coordinate Plane, and identify the coordinates.	- I can plot points in the first quadrant of the Cartesian coordinate plane when given the ordered pairs.	- I can create a design in the first quadrant of the Cartesian coordinate plane, label the X and Y axis, identify the ordered pair for each point, AND create instructions on how to reproduce my design.
	- I can describe how to plot points on the Cartesian plane given a few of the scales (1,2 ,) to be used on all the axes.	- I can explain how to plot points on the Cartesian plane given some of the scales (1, 2, 5, OR 10) to be used on all the axes.	- I can explain how to plot points on the Cartesian plane given all the scales ($1,2,5$, AND 10) to be used on all the axes.	- I can transfer my knowledge about how to plot points on the Cartesian plane given the scales 1, 2, 5, AND 10 to another scale I choose.
Comments				

Mathematics Grade 6
Mathematics Grade 6
Shape and Space (SS)

Outcome	1 - Beginning The student is having difficulty demonstrating an understanding of the concept.	2-Approaching The student is developing an understanding of the concept.	3 - Meeting The student consistently demonstrates an understanding of the concept or has achieved the concept.	4- Exemplary The student independently demonstrates an in-depth understanding of the concept, and consistently applies this knowledge to new situations.
SS6.5 I can demonstrate understanding of single, and combinations of, transformations of 2-D shapes (with and without the use of technology) including: identifying describing performing. [C, CN, R, T, V]	- I can demonstrate my understanding of a translation, rotation, OR reflection concretely, pictorially, OR physically.	- I can demonstrate my understanding of a translation, rotation, OR reflection concretely, pictorially, AND physically.	- I can demonstrate my understanding of a translation, rotation, AND reflection concretely, pictorially, OR physically.	- I can demonstrate my understanding of a translation, rotation, and reflection in multiple ways, including concretely, pictorially, AND physically, AND I can provide an example of a translation, rotation, and reflection from my everyday life.
	- I can identify the one transformation that has been performed on a 2D shape to get the resulting image.	- I can perform one transformation on a 2D shape AND draw the resulting image.	- I can describe the combination of transformations performed on a 2D shape to get the resulting image.	- I can create a design involving a combination of transformations performed on a 2D shape, and give oral or written directions to recreate the design.
Comments				

